Remarkable Effect of Na₂CO₃ Addition on Photodecomposition of Liquid Water into H₂ and O₂ from Suspension of Semiconductor Powder Loaded with Various Metals

Kazuhiro SAYAMA and Hironori ARAKAWA*

National Chemical Laboratory for Industry, Higashi 1-1, Tsukuba, Ibaraki 305

An addition of Na₂CO₃ played the excellent role for the stoichiometric photodecomposition of liquid water over TiO₂ and SrTiO₃ loaded with various metals such as Pt, RuO₂, and NiO_x. The addition of Na₂CO₃ for TiO₂ catalysts was more effective than that for SrTiO₃ catalysts. It was suggested that the stoichiometric photodecomposition of water was associated with CO₃²⁻ ion and neither with Na⁺ nor pH.

Photocatalytic decomposition of water into H₂ and O₂ using semiconductors loaded with various metals have been widely studied. 1,2) Some catalyst systems such as RuO₂-TiO₂ catalyst³) and NaOH coated M-TiO₂ (M = Pt^{4a}), Rh^{4b}), and NiO_x⁵)) were reported for photodecomposition of water vapor in gas phase reaction, however, they could not work for stoichiometric photodecomposition in aqueous suspension. In most cases, only small amount of H₂ was evolved but O₂ was not evolved stoichiometrically. $^{6-8}$)

Recently, we found that Na₂CO₃ addition into Pt-TiO₂ suspension was significantly effective to stoichiometric photodecomposition of liquid water.⁹⁾ Furthermore, it was found that this procedure was also applicable to other photocatalyst systems for water decomposition. Here, we would like to report to the usefulness of Na₂CO₃ addition to photocatalyst systems which composed of many combinations of various metals and semiconductors.

Semiconductor powders of TiO₂ and SrTiO₃ were supplied from Nihon Aerosil (anatase P-25) and Wako Junyaku respectively. Precursors of noble metal were chlorides and those of other metals were nitrates. In case of preparation of Pt, Rh, and Pd catalysts, in situ photochemical deposition method was used. A reaction mixture was prepared by introduction of semiconductor powder (0.3 g), precursor of noble metal (0.3 wt% of metal to semiconductor) and a certain amount of Na₂CO₃ (or NaOH) into distilled water (350 ml) in a quartz reactor. Then, they were mixed well and deaerated. Argon gas was introduced up to 4.6 kPa into this circulating system, and then the first run was started by irradiation at room temperature. After about 14 hours irradiation, the evolved gases at first run were pumped away and argon was introduced again, and then next run was started. In case of catalysts loaded with other metals (Ni, NiO_x, Cu, Ag, Pb, and RuO₂), they were prepared by impregnation method. Catalysts loaded with Ni, Cu, Ag, and Pb were reduced by H₂ at 723 K for 3 hours. RuO₂ loaded catalyst was oxidized by O₂ at 473 K for 3 hours, NiO_x loaded catalyst was reduced by H₂ at 773 K for 2 hours and oxidized by O₂ at 473 K for 1 hour. Reaction procedure after mixing of catalyst

with distilled water and Na₂CO₃ was same as mentioned above. The evolutions of H₂ and O₂ were measured by both on line gaschromatgraphy (TCD, molecular sieve 5A, Ar carrier gas) and pressure sensor.

Table 1 shows the rates of H₂ and O₂ evolution over various kinds of metal supported TiO₂ and SrTiO₃ photocatalysts. The rates of evolved gases in Table 1 were represented by the initial activity in the second run. This is because that ratio of H2 and O2 evolved in the first run was often larger than stoichiometric ratio of water decomposition (H2/O2=2) due to some reasons such as impurites, partially reduced semiconductors or trapping of oxygen. In case of no Na₂CO₃ addition, only small amount of H₂ were evolved, but O₂ evolution were not observed over all TiO2 catalysts. In case of Na2CO3 addition, over the TiO2 catalysts loaded with Pt, Rh, RuO₂, Ni, NiOx, and Cu, rate of H₂ evolution increased considerably and O₂ began to evolved. Especially H₂ and O₂ were evolved stoichiometrically over the combination of Pt-TiO₂, RuO₂-TiO₂, and NiO_X-TiO₂. Figure 1 shows a time course of H₂ and O₂ evolution over RuO₂ (1 wt%)- TiO₂ catalyst. suspended in distilled water without Na₂CO₃ addition, very small amount of H₂ evolved, but O₂ did not In case of Na₂CO₃ addition, H₂ and O₂ were evolved evolved even after 40 hours irradiation. stoichiometrically. It was found that 0.76 mol of Na₂CO₃ addition was more effective than that of 0.38 mol. The rates of H2 and O2 were constant up to 60 hours. Therefore it was concluded that addition of Na2CO3 played the excellent role for the effective photodecomposition of water over several TiO2 catalysts. Furthermore, it should be noteworthy that Cu supported TiO2 catalyst proved to have the activity of evolution of H₂ and O₂ simultaneously.

Effect of NaOH addition on photodecomposition of water were often reported 10a, 11a) and we tried to check

the effect of addition of NaOH instead of Na2CO3 ((d) in Table 1). The rate of H₂ evolution increased up to only two times by the addition of NaOH. In addition, O2 evolution could not be observed. This shows that the effect of Na₂CO₃ addition is different from that of NaOH addition. The pH of Na₂CO₃ solution was 11 and this value was between those of NaOH and pure water (NaOH: pH=13, pure water: pH=8). From these results, it was considered that stoichiometric photodecomposition of water was associated with CO₃²- and neither with Na⁺ nor However, it is not fully clarifyed at this moment that why addition of Na₂CO₃ leaded to the remarkable and stoichiometric evolution of H2 and O2. It is now under investigations.

Over SrTiO₃ catalysts loaded with Pt, Rh Ni, and NiO_x, both H₂ and O₂ were evolved simultaneously from distilled water without Na₂CO₃ addition. Same results were already reported by Lehn^{10b}) and Domen et al.^{11b}) On

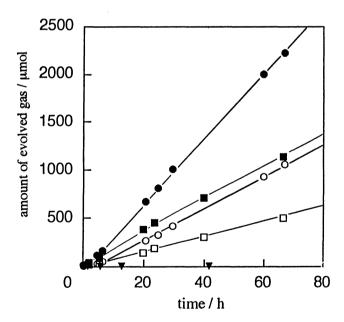


Fig. 1. Time course of H₂ and O₂ evolution over RuO₂(1 wt%)-TiO₂; with 0.76 mol (H₂: \bullet , O₂: \circ) and 0.38 mol (H₂: \bullet , O₂: \circ) of Na₂CO₃, and without Na₂CO₃ (H₂: \checkmark , O₂: \checkmark).

Table 1. The rate of H₂ and O₂ evolutions over various kinds of photocatalysts^a)

Catalyst ^{b)}	Amount of	Rate of gas evolution / μmol·h ⁻¹ c)		
	Na ₂ CO ₃ / mol	H2	O ₂	H ₂ /O ₂ ratio
Pt(0.3wt%)-TiO ₂	0	2	0	_
	0.38	40	17	2.4
	0.76	78	38	2.1
	0.76d)	5	0	
Rh(0.3wt%)-TiO ₂	0	2	Ŏ	_
	0.38	12	trace	· -
	0.76	16	3	5.3
Pd(0.3wt%)-TiO ₂	0	1	0	-
	0.76	2	0	-
RuO ₂ (1wt%)-TiO ₂	0	trace	0	-
	0.38	21	9	2.3
	0.76	34	17	2.0
	0.76d)	7	0	-
Ni(1wt%)-TiO ₂	0	2	0	-
	0.38	55	8	6.9
	0.76	78	29	2.7
	0.76 d)	5	0	_ '
NiO _X (1wt%)-TiO ₂ e)	0	1	0	_
	0.76	64	32	2.0
	0.76d)	10	0	
Cu(1wt%)-TiO ₂	0.70 /	10	ő	-
	0.76	13	3	4.3
	0.76 d)	6	0	
Ag(1wt%)-TiO ₂	0.76	1	Ö	_
Pb(1wt%)-TiO ₂	0.76	Ō	Ö	_
10(11110) 1102	0.70			
Pt(0.3wt%)-SrTiO3	0	9	2	4.5
	0.38	11	trace	
	0.76	10	4	2.5
Rh(0.3wt%)-SrTiO3	0	20	4	5.0
	0.38	48	14	4.4
	0.76	5	trace	-
-	0.76 ^d)	1	0	-
RuO ₂ (1wt%)-SrTiO ₃	0	2	0	-
	0.76	2	0	-
Ni(1wt%)-SrTiO3	0	10	2	5.0
	0.76	8	2	4.0
$NiO_X(1wt\%)$ -SrTiO3 ^{e)}	0	9	4	2.3
	0.76	41	20	2.1
Cu(1wt%)-SrTiO3	0	2	0	-
	0.76	3	trace	-

<sup>a) Catalyst: 0.3 g, water: 350 ml, an inner irradiation type quartz cell, high pressure Hg lamp(400 W).
b) Pt, Rh, and Pd catalysts were prepared by photo-deposition method.
Other catalysts were prepared by impregnation method.
c) Initial activity in the second run.
d) Amount of NaOH instead of Na₂CO₃.
e) H₂ reduction at 773 K following O₂ oxidation at 473 K.</sup>

the other hand, the additions of Na₂CO₃ for SrTiO₃ catalysts were not so effective as that for TiO₂ catalysts. Promoted effects by Na₂CO₃ was not observed over Pt, RuO₂, and Ni catalysts at all. As for Rh-SrTiO₃, the activity increased two times and became a maximum at 0.38 mol of Na₂CO₃. While the activity of NiO_X-SrTiO₃ increased four times at 0.76 mol of Na₂CO₃.

Semiconductors such as TiO₂ and SrTiO₃ are widely studied for photodecomposition of water because of the chemical stability and the suitable potential level of the conduction band, however, observed behavior in Na₂CO₃ addition was very different from each other. In connection with this, Sato et al. reported that the promoting effect of NaOH coating over metal supported SrTiO₃ for photodecomposition of water vapor was not so remarkable as in case of metal supported TiO₂. ¹²) They inferred that the contact of SrTiO₃ with a high concentrated NaOH leaded to the inactivation. Lehn et al. also described the solubility of SrTiO₃ even in pure water. ¹⁰) From these results, it is suggested that the instability of SrTiO₃ in high concentrated Na₂CO₃ solution might lose photocatalytic activity in the present study.

Other semiconductor materials such as ZnO, WO₃, Fe₂O₃, and SiC have been also tested. However, the promoted effect of Na₂CO₃ on water decomposition was not found.

References

- 1) M. A. Grätzel, "Energy Resources Through Photochemistry and Catalysis," Academic Press, Inc., New York, (1983).
- 2) M. Schiavello, "Photoelectrochemistry, Photocatalysis and Photoreactors: Fundamentals and Developments," Reidel, Dordecht, (1985).
- 3) T. Kawai and T. Sakata, Chem. Phys. Lett., 72, 87 (1980).
- a) S. Sato and J. M. White, Chem. Phys. Lett., 72, 83 (1980);
 b) K. Yamaguchi and S. Sato,
 J. Chem. Soc., Faraday Trans. 1, 81, 1237 (1985).
- 5) A. Kudo, K. Domen, K. Maruya, and T. Onishi, Chem. Phys. Lett., 133, 517 (1987).
- 6) J. C. Escudero, S. Cervera-March, J. Giménez, and R. Simarro, J. Catal., 123, 319 (1990).
- 7) J. Kiwi and M. Grätzel, J. Mol. Catal., 39, 63 (1987).
- 8) G. Munuera, J. Espinos, A. Fernández, P. Malet, and A. Gonzalez-Elipe, *J. Chem. Soc., Faraday Trans.*, **86**, 3441 (1990).
- 9) K. Sayama and H. Arakawa, J. Chem. Soc., Chem. Commum., in press.
- a) J. Lehn, J. Sauvage R. Ziessel, and L. Hilaire, *Isr. J. Chem.*, 22, 168 (1982);
 b) J. Lehn, J. Sauvage, and R. Ziessel, *Nouv. J. Chim.*, 4, 623 (1980);
- 11) a) K. Domen, S. Naito, T. Onishi, and K. Tamaru, Chem. Phys. Lett., 92, 433 (1982);
 - b) K. Domen, A. Kudo, and T. Onishi, J. Catal., 102, 92 (1986).
- 12) K. Yamaguchi and S. Sato, Nouv. J. Chim., 10, 217 (1986).

(Received November 16, 1991)